
25-NSIJ1NC1 Page : 1 / 15

BACCALAURÉAT GÉNÉRAL

ÉPREUVE D’ENSEIGNEMENT DE SPÉCIALITÉ

SESSION 2025

NUMÉRIQUE ET SCIENCES INFORMATIQUES

JOUR 1

Durée de l’épreuve : 3 heures 30

L’usage de la calculatrice n’est pas autorisé.

Dès que ce sujet vous est remis, assurez-vous qu’il est complet.

Ce sujet comporte 15 pages numérotées de 1/15 à 15/15.

Le sujet est composé de trois exercices indépendants.

Le candidat traite les trois exercices.

25-NSIJ1NC1 Page : 2 / 15

Exercice 1 (6 points)

Cet exercice porte sur les graphes, les protocoles réseaux et la programmation
orientée objet.

Partie A

Le graphe suivant modélise un ensemble de routeurs ; les sommets sont les routeurs,
les arêtes les liaisons entre ceux-ci.

Figure 1. Schéma des routeurs et des liaisons

On désire parcourir ce graphe en largeur depuis le sommet A.

1. Dire lequel de ces parcours est un parcours en largeur en justifiant :

o ABCDEF ;
o ABCEDF ;
o ABCDFE.

Voici un résumé sommaire du fonctionnement du protocole RIP permettant à chaque
routeur d’un réseau de taille modérée d’établir sa table de routage :

Règle a (règle d’initialisation). Chaque routeur initialise sa table en y ajoutant ses
voisins directs. Ils sont accessibles en un saut, sans passer par aucun routeur
intermédiaire.

Règle b (règle de transmission/réception). À intervalles de temps réguliers chaque
routeur envoie sa table de routage à ses voisins.

Règle c (règle de mise à jour). Lorsqu’un routeur reçoit les informations d’un routeur
voisin, trois cas peuvent survenir :

• une route vers un nouveau routeur lui est présentée : il l’ajoute à sa table de
routage ;

• une route vers un routeur déjà connu lui est présentée, plus longue en nombre
de sauts que celle inscrite dans sa table : elle est ignorée ;

• une route vers un routeur déjà connu lui est présentée, mais strictement plus
courte en nombre de sauts que la précédente : l’ancienne est remplacée par
celle-ci.

EducN_MDDg4MT4c4MDYezMj2IxMwjAyNT0EyMjQEyMjgAwMQTcg

25-NSIJ1NC1 Page : 3 / 15

La réception par chaque routeur des tables de tous ses voisins et la mise à jour de sa
table de routage en conséquence constitue une itération du protocole. Au bout d’un
petit nombre de ces itérations, plus aucune table de routage ne varie, on dit que le
processus est stabilisé.

Pour tout cet exercice, on n’envisagera pas les cas problématiques dans lesquels une
liaison est coupée ou un routeur tombe en panne.

On considère des routeurs A, B, C, D, E et F connectés comme indiqué sur le graphe
de la figure 1.

Voici la table de routage de A à l’initialisation du protocole RIP :

Table de routage de A

routeur nombre de sauts prochain routeur

B 1 –

C 1 –

E 1 –

2. Donner la table de routage de F à l’initialisation du protocole RIP.

3. Donner la table de routage de A après une première itération de RIP (deux
réponses sont possibles).

4. Donner le numéro de l’itération de RIP à partir duquel les tables des routeurs
du réseau ne varient plus.

On suppose dans la question suivante que les routeurs E et F sont reliés.

5. Donner la nouvelle table de routage de A après stabilisation de RIP (deux
réponses sont possibles).

Partie B

Pour simuler la situation précédente et les tables de routage, on modélise le
fonctionnement d’un routeur par la classe Routeur. Chaque instance r de la classe
Routeur possède quatre attributs.

• nom : une chaine de caractères qui identifie le routeur.

• voisins : une liste d’objets de type Routeur. Il s’agit de routeurs qui sont
directement connectés au routeur r.

• nb_sauts : un dictionnaire qui associe à chaque routeur accessible depuis r
le nombre de sauts nécessaires pour l’atteindre depuis r.

• prochain : un dictionnaire qui associe à chaque routeur r_accessible,
accessible depuis r, le premier routeur sur un chemin qui mène à

EducN_MDDg4MT4c4MDYezMj2IxMwjAyNT0EyMjQEyMjgAwMQTcg

25-NSIJ1NC1 Page : 4 / 15

r_accessible, en n sauts, où n est la valeur associée à r_accessible dans
nb_sauts. S’il y a un unique saut de r à r_accessible, alors la valeur
associée au routeur r_accessible est None.

Initialement, tous les routeurs sont déconnectés : l’attribut voisins est initialisé avec
la liste vide, et les attributs nb_sauts et prochain avec le dictionnaire vide.

class Routeur:
 def __init__(self, nom):
 self.nom = nom
 self.voisins = []
 self.nb_sauts = {}
 self.prochain = {}

Dans le programme principal, on crée les routeurs de la manière suivante :

A = Routeur('A')
B = Routeur('B')
C = Routeur('C')
D = Routeur('D')
E = Routeur('E')
F = Routeur('F')

Ainsi que la liste des routeurs

liste_routeurs = [A, B, C, D, E, F]

Afin de pouvoir relier les routeurs entre eux, on souhaite écrire une méthode relie,
de la classe Routeur, dont on donne le code incomplet ci-dessous. Cette méthode
prend en argument le routeur self ainsi qu’un routeur autre et met à jour si
nécessaire les attributs voisins, nb_sauts et prochain des routeurs self et
autre afin d’indiquer la présence d’une connexion entre ces deux routeurs. Dans le
cas où les routeurs sont déjà connectés, cette méthode ne fait rien.

1 def relie(self, autre):
2 if autre not in self.voisins:
3 self.voisins.append(...)
4 self.nb_sauts[autre] = ...
5 self.prochain[autre] = ...
6 if self not in autre.voisins:
7 autre.relie(...)
8

6. Recopier et compléter le code de la méthode relie.

7. Écrire la méthode relie_liste de la classe Routeur qui prend en paramètre
une liste de routeurs lst et qui relie le routeur self à chacun des routeurs de
la liste lst.

Par exemple, pour relier le routeur A aux routeurs B, C et E, on exécute l’instruction :

EducN_MDDg4MT4c4MDYezMj2IxMwjAyNT0EyMjQEyMjgAwMQTcg

25-NSIJ1NC1 Page : 5 / 15

A.relie_liste([B, C, E])
On n'appelle pas B.relie(A) car la liaison est déjà faite

8. Écrire les instructions manquantes pour relier les routeurs de manière à obtenir
le graphe de la figure 1.

D’après la règle c (règle de mise à jour) du protocole RIP, lorsqu’un routeur reçoit les
informations d’un routeur voisin, il doit mettre à jour sa table de routage. On donne ci-
dessous le code incomplet de la méthode met_a_jour_table qui implémente la
règle c du protocole RIP.

def met_a_jour_table(self, autre):
 for r in autre.nb_sauts:
 if r != self:
 if (r not in self.nb_sauts or
 self.nb_sauts[r] > ...):
 self.nb_sauts[r] = ...
 self.prochain[r] = ...

9. Recopier et compléter le code de la méthode met_a_jour_table ci-dessus.

10. Écrire la méthode itere_rip qui prend en paramètre le routeur self et met
à jour sa table de routage lorsqu’il reçoit la table de routage de chacun des
routeurs présents dans la liste de ses voisins.

11. Écrire une fonction qui prend en paramètre une liste de routeurs l_routeurs
et qui réalise une itération du protocole RIP pour tous les routeurs de
l_routeurs.

Au bout de quelques itérations, le protocole RIP converge : plus aucune table de
routage du réseau n’est modifiée. On aimerait pouvoir itérer le protocole dans le
programme principal jusqu’à ce que ce soit le cas, à l’aide d’une boucle while.

On suppose que la méthode met_a_jour_table de la classe Routeur a été
modifiée de telle sorte qu’elle renvoie True dans le cas où le routeur self a procédé
à une mise à jour de sa table de routage, et False sinon.

12. Écrire une version modifiée du code de la méthode itere_rip de la classe
Routeur de telle sorte que celle-ci renvoie True dans le cas où le routeur self
a procédé à une modification de sa table de routage au cours de l’exécution de
la méthode itere_rip, et False sinon.

On donne ci-dessous le code du programme principal. On suppose que les instructions
permettant de relier les routeurs ont été écrites à la suite et que la situation est celle
décrite dans le graphe de la figure 1.

A = Routeur('A')
B = Routeur('B')
C = Routeur('C')
D = Routeur('D')

EducN_MDDg4MT4c4MDYezMj2IxMwjAyNT0EyMjQEyMjgAwMQTcg

25-NSIJ1NC1 Page : 6 / 15

E = Routeur('E')
F = Routeur('F')
liste_routeurs = [A, B, C, D, E, F]
instructions permettant de relier les routeurs

13. Compléter le code du programme principal afin que celui-ci mette à jour les
tables de routage des routeurs présents dans la liste liste_routeurs jusqu’à
ce qu’il ne soit plus nécessaire de faire des mises à jour des tables de routage.

 On ne demande pas de réécrire les instructions permettant de connecter les
routeurs entre eux.

EducN_MDDg4MT4c4MDYezMj2IxMwjAyNT0EyMjQEyMjgAwMQTcg

25-NSIJ1NC1 Page : 7 / 15

Exercice 2 (6 points)

Cet exercice porte sur les bases de données et la programmation orientée objet.

Dans cet exercice, on pourra utiliser les clauses du langage SQL pour :

• construire des requêtes d’interrogation à l’aide de SELECT, FROM, WHERE (avec
les opérateurs logiques AND, OR), JOIN ... ON ;

• construire des requêtes d’insertion et de mise à jour à l’aide de UPDATE,
INSERT, DELETE ;

• affiner les recherches à l’aide de DISTINCT et ORDER BY.

Susie décide de créer une base de données qui recense des randonnées allant d’un
parking à un lac.

Elle crée trois relations représentées sur le schéma ci-dessous (figure 1).

Figure 1. Schéma des trois relations

Les clés primaires sont signalées par une clé. Dans la relation rando :

• depart est une clé étrangère qui référence l’attribut idP de la relation
parking ;

• arrivee est une clé étrangère qui référence l’attribut idL de la relation lac.

L’altitude, exprimée en mètre, est un entier.

Voici un extrait des enregistrements de ces trois relations.

parking

idP commune altitude coord_GPS

1 Chamonix 1 026 (45.98;6.89)

2 Argentiere 1 429 (45.99;6.92)

3 Passy 600 (45.92;6.72)

4 Passy 1 181 (45.95;6.71)

5 Nevache 2 022 (45.05;6.52)

EducN_MDDg4MT4c4MDYezMj2IxMwjAyNT0EyMjQEyMjgAwMQTcg

25-NSIJ1NC1 Page : 8 / 15

rando

idR depart arrivee

1 1 1

2 2 1

3 1 2

4 3 3

lac

idL nom altitude

1 Lac Blanc 2 354

2 Lacs Noirs 2 564

3 Lac Vert 1 266

4 Lac Rouge 2 585

1. Indiquer ce que renvoie la requête suivante lorsqu’on l’applique aux extraits
précédents.

 SELECT nom
FROM lac
WHERE altitude <= 2000;

2. Indiquer les noms des lacs qu’on peut atteindre depuis le parking de Chamonix
d’après la base de données de Susie.

À partir de maintenant, on travaille sur la totalité des enregistrements et non plus
seulement sur les extraits précédents.

3. Donner une requête permettant d’obtenir les coordonnées GPS des parkings
situés dans la commune de Passy à une altitude comprise strictement entre 800
et 1 000 mètres.

4. Donner une requête permettant d’obtenir les noms des lacs qu’il est possible
d’atteindre depuis le parking situé à 1300 mètres d’altitude dans la commune
de Cordon (on admet qu’un tel parking existe dans la base de données).

Dans les questions suivantes, l’ordre des requêtes SQL est important. On considère
une nouvelle randonnée qui part du parking dont l’identifiant est 3 à Passy et qui
conduit au lac d’Anterne situé à 2 059 mètres d’altitude.

EducN_MDDg4MT4c4MDYezMj2IxMwjAyNT0EyMjQEyMjgAwMQTcg

25-NSIJ1NC1 Page : 9 / 15

Le parking est déjà dans la base de données mais par contre, ni la randonnée, ni le
lac n’y figurent.

5. Donner les requêtes permettant à Susie d’ajouter à sa base de données cette
randonnée et ce lac (on pourra utiliser l’identifiant 42 pour le lac et l’identifiant
100 pour la randonnée).

6. Susie a fait une erreur de saisie en insérant le nom du lac, elle a écrit ‘Lc d
Anterne’. Donner la requête permettant de corriger cette erreur.

7. Le parking dont l’identifiant est 28 a été transformé en un parc et n’existe plus.

 Donner les requêtes permettant de supprimer ce parking de la base de
données.

Susie souhaite obtenir pour chacun des parkings le nombre de randonnées qui en
partent.

Elle n’a pas encore appris à le faire en SQL et décide de le faire en Python. Pour cela
elle définit la classe Rando ci-dessous permettant de représenter chacune des
randonnées. La table rando est alors donnée par une liste d’objets de la classe
Rando.

1 class Rando:
2 def __init__(self, idR, depart, arrivee):
3 self.idR = idR # identifiant de la rando
4 self.depart = depart # identifiant du parking
5 self.arrivee = arrivee # identifiant du lac

8. Recopier et compléter les lignes 3 et 5 de la fonction get_parking qui prend
en paramètre une liste de randonnées et qui renvoie la liste des identifiants des
différents parkings, points de départ de ces randonnées (cette liste ne devra
pas avoir de doublon).

 1 def get_parking(randos):
2 parkings = []
3 for ...:
4 if rando.depart not in parkings:
5 ...
6 return parkings

 Par exemple, get_parking([Rando(1, 1, 1), Rando(2, 2, 1),
Rando(3, 1, 2)]) renvoie [1, 2].

9. Recopier et compléter la ligne 4 de la fonction get_nb_rando qui prend en
paramètres un identifiant de parking et une liste de randonnées, et qui renvoie
le nombre de randonnées qui partent de ce parking.

 1 def get_nb_rando(parking, randos):
2 nb = 0
3 for rando in randos:
4 if ...:

EducN_MDDg4MT4c4MDYezMj2IxMwjAyNT0EyMjQEyMjgAwMQTcg

25-NSIJ1NC1 Page : 10 / 15

5 nb = nb + 1
6 return nb

 Par exemple, get_nb_rando(1, [Rando(1, 1, 1), Rando(2, 2,
1), Rando(3, 1, 2)]) renvoie 2.

10. Écrire une fonction nb_rando_par_parking qui prend en paramètre une liste
de randonnées et qui renvoie un dictionnaire qui associe à chaque identifiant
de parking le nombre de randonnées qui partent de ce parking.

 Par exemple, nb_rando_par_parking([Rando(1, 1, 1), Rando(2,
2, 1), Rando(3, 1, 2)]) renvoie {1:2, 2:1}.

EducN_MDDg4MT4c4MDYezMj2IxMwjAyNT0EyMjQEyMjgAwMQTcg

25-NSIJ1NC1 Page : 11 / 15

Exercice 3 (8 points)

Cet exercice porte sur l’algorithmique, la représentation binaire des entiers positifs et
la programmation en langage Python.

Partie A : Modélisation du problème

On s’intéresse à un jeu de calcul mental appelé Objectif somme. Le jeu se joue sur
un plateau de 5x5 cases. Chaque case contient un chiffre non nul de 1 à 9. On dispose
également de nombres cibles en ligne et en colonne. Le but est de trouver les cases
du tableau à vider afin d’atteindre les cibles en ligne et en colonne :

• sur chaque ligne, la somme des cases restantes doit valoir la cible de cette ligne
;

• sur chaque colonne, la somme des cases restantes doit valoir la cible de cette
colonne.

De plus, il faut conserver au moins un chiffre par ligne.

Par exemple, la figure suivante représente un plateau de jeu et une solution :

Figure 1. Plateau de jeu (à gauche) et une solution (à droite).

Les lignes du plateau seront nommées de L0 à L4 et les colonnes de C0 à C4.

Ainsi l’exemple de la figure 1, la ligne L1 fait référence aux valeurs 8,6,3,5,1 du plateau
et la colonne C3 fait référence aux valeurs 3,5,2,8,8 du plateau.

Dans la suite, on suppose que les cibles sont nécessairement des entiers entre 1 et
45.

1. Expliquer pourquoi on fait cette hypothèse.

2. Donner la plus petite valeur de cible que la ligne [6,4,5,8,2] peut atteindre.
Donner aussi la plus grande valeur de cible que la ligne peut atteindre.

EducN_MDDg4MT4c4MDYezMj2IxMwjAyNT0EyMjQEyMjgAwMQTcg

25-NSIJ1NC1 Page : 12 / 15

Dans la suite on appelle plateau une liste de 5 listes de 5 entiers. Chacune des listes
de 5 entiers représente une ligne. Les entiers de ces listes sont compris entre 0 et 9,
0 représente une case vide. Pour représenter un jeu, un plateau doit être accompagné
de deux listes de 5 entiers : la liste des cibles de lignes, la liste des cibles des colonnes.

Voici une représentation en langage Python de la figure 1 :

plateau_ex = [[7, 9, 2, 3, 2],
 [8, 6, 3, 5, 1],
 [7, 7, 3, 2, 7],
 [6, 4, 5, 8, 2],
 [8, 6, 8, 8, 4]]

ciblesLignes_ex = [13, 9, 12, 6, 4]

ciblesColonnes_ex = [15, 13, 5, 2, 9]

3. Écrire une fonction extraireLigne qui prend en paramètre un plateau et un
indice i (i compris entre 0 et 4 inclus) et renvoie la ligne Li du plateau. Par
exemple, la valeur de retour de l’appel extraireLigne(plateau, 0) est
[7, 9, 2, 3, 2].

4. Écrire une fonction extraireColonne qui prend en paramètre un plateau et
un indice i (compris entre 0 et 4 inclus) et renvoie la colonne Ci du plateau. Par
exemple, la valeur de retour de l’appel extraireColonne(plateau, 1) est
[9, 6, 7, 4, 6].

Partie B : Simplification du problème

Dans la figure 1, la solution comporte des cases vides. Ces cases correspondent aux
chiffres que l’on a éliminés. En langage Python, on représentera ces cases vides par
des zéros. Ainsi, pour éliminer du plateau un chiffre, il suffira de le remplacer par 0.

5. Donner la représentation en langage Python du plateau de la solution proposée.

On se propose d’utiliser deux règles pour éliminer simplement certains chiffres du
plateau.

Règle 1 : on remarque que les chiffres d’une ligne ou d’une colonne donnée du plateau
doivent être inférieurs ou égaux à la cible. Par exemple, pour la ligne L4 de la figure 1,
la cible est 4, on peut alors éliminer tous les chiffres 8 et 6. En appliquant la règle 1,
L4 devient alors [0, 0, 0, 0, 4].

6. Pour le jeu représenté à gauche sur la figure 1, donner en Python le plateau
obtenu en appliquant la règle 1 à chaque ligne.

La fonction à compléter regle1 ci-dessous est une implémentation de la règle 1. Elle
prend en paramètre plateau, ciblesLignes et ciblesColonnes décrivant un jeu
comme expliqué plus haut, et elle modifie plateau en appliquant la règle 1 à chaque
ligne et à chaque colonne.

EducN_MDDg4MT4c4MDYezMj2IxMwjAyNT0EyMjQEyMjgAwMQTcg

25-NSIJ1NC1 Page : 13 / 15

 1 def regle1(plateau, ciblesLignes, ciblesColonnes):
 2 for i in range(5):
 3 tab = extraireLigne(plateau, i)
 4 cible = ...
 5 for j in range(5):
 6 if tab[j] > cible:
 7 plateau[i][j] = 0
 8 for j in range(5):
 9 tab = extraireColonne(plateau, j)
10 cible = ...
11 for i in range(5):
12 if tab[i] > cible:
13 plateau[i][j] = 0

7. Recopier et compléter les lignes 4 et 10 pour compléter le code de la fonction
regle1.

Règle 2 : S’il n’y a qu’un seul nombre impair dans une ligne ou une colonne dont la
cible est paire, on peut éliminer ce nombre impair. Par exemple, pour la ligne L3 de la
figure 1, la cible est 6 et il n’y a qu’un nombre impair : 5. On peut donc éliminer ce 5.

8. Écrire une fonction unImpair qui prend comme paramètre une liste d’entiers,
et qui renvoie True si la liste ne contient qu’un seul entier impair et False
sinon.

La fonction à compléter regle2 ci-dessous est une implémentation de la règle 2. Elle
prend en paramètre plateau, ciblesLignes et ciblesColonnes décrivant un jeu
comme expliqué plus haut, et elle modifie plateau en appliquant la règle 2 à chaque
ligne et à chaque colonne.

9. Recopier et compléter les lignes 4, 5, 11 et 12 pour compléter le code de la
fonction regle2 ci-dessous qui prend comme paramètre un plateau, une
ciblesLignes et une ciblesColonnes et qui applique la règle 2.

 1 def regle2(plateau, ciblesLignes, ciblesColonnes):
 2 for i in range(5):
 3 ligne = extraireLigne(plateau, i)
 4 ...
 5 if ...:
 6 for j in range(5):
 7 if plateau[i][j] % 2 == 1:
 8 plateau[i][j] = 0
 9 for j in range(5):
10 colonne = extraireColonne(plateau, j)
11 ...
12 if ...:
13 for i in range(5):

EducN_MDDg4MT4c4MDYezMj2IxMwjAyNT0EyMjQEyMjgAwMQTcg

25-NSIJ1NC1 Page : 14 / 15

14 if plateau[i][j] % 2 == 1:
15 plateau[i][j] = 0

Ces règles permettent de simplifier le jeu mais pas de le résoudre dans tous les cas.
Il est nécessaire d’utiliser d’autres méthodes.

Partie C : Problème sur une ligne et représentation binaire

Pour aider à la résolution du jeu Objectif somme, on cherche dans cette partie à
résoudre le problème sur une ligne seulement. Il s’agit de trouver les nombres d’une
liste de 5 entiers dont la somme est égale à un nombre cible.

Par exemple, une solution pour la liste [6, 4, 5, 8, 2] avec la cible 6 est de
conserver le chiffre 6 uniquement. Une autre solution est de conserver le 4 et le 2.

On représente la première solution (conserver le 6) par la liste [1, 0, 0, 0, 0].
Cela signifie que la solution choisie est uniquement le premier élément de la liste. La
liste [1, 0, 0, 0, 0] est appelée un masque solution du problème. Le masque
solution correspondant à la solution avec le 4 et le 2, est alors [0, 1, 0, 0, 1].

10. Expliquer pourquoi [1, 1, 0, 0, 1] est un masque solution pour la liste
[1, 2, 3, 5, 2] et la cible 5. Donner tous les autres masques solutions.

11. Écrire une fonction somme qui prend comme paramètres une liste de 5 entiers
et un masque (une liste de taille 5 de 0 et de 1) et qui renvoie la somme des
chiffres du tableau correspondant au masque. Par exemple, somme([1, 5,
3, 4, 8], [0, 1, 1, 0, 1]) doit renvoyer 5 + 3 + 8 = 16.

On peut remarquer que les masques solutions correspondent à des nombres en
écriture binaire. Par exemple, le masque [0, 1, 0, 0, 1] correspond à l’entier 9
car 0 × 16 + 1 × 8 + 0 × 4 + 0 × 2 + 1 × 1 = 9. Ainsi, on représente les masques
possibles par des nombres en écriture binaire sur 5 bits.

12. Donner la représentation binaire sur 5 bits de l’entier 26 sous la forme d’une
liste de taille 5.

13. Expliquer pourquoi on ne représente que les entiers compris entre 0 et 31 sur 5
bits.

14. Écrire une fonction dec2bin qui prend comme paramètre un entier compris
entre 0 et 31 et qui renvoie sa représentation binaire sous la forme d’une liste
de 5 bits. Par exemple la valeur de retour de l’appel dec2bin(9) est [0, 1,
0, 0, 1].

Pour résoudre le problème, on se propose de générer tous les masques possibles
avec la fonction dec2bin et de tester si ce sont des masques solutions. On stockera
alors tous ces masques solutions dans une liste. On pourra utiliser la méthode append
appliquée à une liste. Cette méthode permet d’ajouter un élément en fin de liste. Par
exemple, à l’issue du code suivant, la liste solutions est [1, 2] :

EducN_MDDg4MT4c4MDYezMj2IxMwjAyNT0EyMjQEyMjgAwMQTcg

25-NSIJ1NC1 Page : 15 / 15

solutions = [] # liste vide
solutions.append(1)
solutions.append(2)

15. Écrire une fonction masques_solutions qui prend comme paramètres une
liste de taille 5 entiers et une cible, et qui renvoie la liste de tous les masques
solutions correspondant.

Partie D : Retour au jeu “Objectif Somme”

Finalement, on vérifie qu’un plateau proposé comme solution respecte bien les
contraintes sur les lignes et les colonnes.

16. Écrire une fonction teste_solution qui prend comme paramètres un
plateau, la liste des cibles des lignes, la liste des cibles des colonnes, et qui
retourne True si les valeurs des cases restantes du plateau vérifient bien les
cibles (sur chaque ligne et sur chaque colonne), et False sinon.

