
25-NSIJ2NC1 Page : 1 / 18

BACCALAURÉAT GÉNÉRAL

ÉPREUVE D’ENSEIGNEMENT DE SPÉCIALITÉ

SESSION 2025

NUMÉRIQUE ET SCIENCES INFORMATIQUES

JOUR 2

Durée de l’épreuve : 3 heures 30

L’usage de la calculatrice n’est pas autorisé.

Dès que ce sujet vous est remis, assurez-vous qu’il est complet.

Ce sujet comporte 18 pages numérotées de 1/18 à 18/18.

Le sujet est composé de trois exercices indépendants.

Le candidat traite les trois exercices.

25-NSIJ2NC1 Page : 2 / 18

Exercice 1 (6 points)

Cet exercice porte sur la sécurisation des communications, la représentation des
données et la programmation en Python.

Alice et Bob cherchent à communiquer de manière sécurisée sur un réseau ouvert à
tous. Eve veille et écoute tout ce qui passe sur le réseau. Mallory aimerait bien se
faire passer pour quelqu’un d’autre. L’objectif de cet exercice est de s’intéresser à
des protocoles de chiffrements et à un protocole de signature permettant
d’authentifier l’auteur d’un message.

Alice, qui ne connaît Bob que par les réseaux sociaux, aimerait lui faire parvenir de
manière secrète le message m0 suivant :

m0 = 'Rendez-vous à 16h place de la liberté. Signé : Alice.'

Si Alice transmet directement ce message m0 sur le réseau, Eve, qui écoute le
réseau en permanence, pourra en prendre connaissance.

Partie A : Cryptographie symétrique

On se place dans le cadre d’un chiffrement symétrique avec une seule clé. On
suppose disposer d’une fonction code en Python telle que code(m, cle) permet
de chiffrer et de déchiffrer un message m à l’aide de la clé cle. Cette fonction prend
en paramètres deux chaînes de caractères et renvoie une chaîne de caractères. On
suppose que, pour tout message m, on a toujours : code(code(m, cle), cle)
égal à m.

Ceci veut dire que l’on peut chiffrer un message à l’aide de la clé, puis le déchiffrer
exactement de la même manière à l’aide de cette même clé.

Alice effectue donc l’instruction suivante :

m1 = code(m0, cle)

Elle transmet à Bob le message m1 ainsi que la clé cle sur le réseau.

1. Donner l’instruction que doit écrire Bob pour déchiffrer le message d’Alice et
affecter le résultat dans une variable m2.

Cependant, Eve dispose du message m1 ainsi que de la cle qui ont tous les deux
été transmis sur le réseau. Elle peut donc effectuer la même instruction que Bob et
prendre connaissance du message secret.

Partie B : Cryptographie asymétrique

On se place maintenant dans le cadre d’un chiffrement asymétrique avec cette fois-ci
une paire clé privée/clé publique. Dans ce système, chaque individu possède une
paire de clés associées (cle1, cle2). On suppose toujours disposer d’une

EducN_MDDg4MT4c4MDYezMj7IxMwjAyNT6EyMjQEyMjrA0MWzMg

25-NSIJ2NC1 Page : 3 / 18

fonction code telle que code(m, cle) permet de chiffrer ou déchiffrer un message
m à l’aide de la clé cle. On suppose cette fois-ci que, pour tout message m et pour
toute paire de clés associées (cle1, cle2), on a toujours : code(code(m,
cle1), cle2) qui est égal à code(code(m, cle2), cle1) et qui sont tous les
deux égaux à m.

Ceci veut dire que lorsque l’on transforme un message à l’aide d’une clé puis de
l’autre clé associée on retrouve le message initial. On suppose que la connaissance
d’une clé ne permet pas de trouver l’autre. On suppose aussi qu’il est impossible de
retrouver un message chiffré par une clé sans connaître l’autre clé.

Alice et Bob ont tous les deux généré une paire de clés associées. On note
(cle1_a, cle2_a) la paire de clés d’Alice et (cle1_b, cle2_b) la paire de clés
de Bob. Alice diffuse sa clé cle1_a sur Internet mais pas sa clé cle2_a et de même
Bob diffuse sa clé cle1_b sur Internet mais pas sa clé cle2_b.

Alice effectue l’instruction suivante, en utilisant la clé cle1_b de Bob qu’elle trouve
sur Internet :

m1 = code(m0, cle1_b)

Elle transmet ensuite ce message chiffré m1 sur le réseau.

2. Donner l’instruction que doit réaliser Bob pour déchiffrer le message d’Alice
afin de connaître l’heure et le lieu du rendez-vous.

3. Justifier qu’il est désormais impossible pour Eve de prendre connaissance du
contenu du message secret.

4. On parle de système de clé privée/clé publique. Dans l’échange précédent,
indiquer quelle est la clé privée et quelle est la clé publique.

5. Bob souhaite accuser bonne réception de ce rendez-vous et transmettre à
Alice le message suivant 'Bien reçu. Rendez-vous à 16h donc.',
dont Eve ne doit pas pouvoir prendre connaissance. Donner, dans l’ordre, les
instructions que doivent réaliser Bob et Alice pour sécuriser ce deuxième
envoi.

6. Expliquer pourquoi il est nécessaire d’avoir les deux clés au lieu de n’avoir
que la clé privée.

Partie C : Signature

Dans cette partie et la suivante, Alice et Bob ne cherchent plus à cacher le message
et Alice transmet directement m0 sur le réseau sans le chiffrer. Mallory souhaite
envoyer le message suivant à Bob, en faisant croire que ce message provient
d’Alice :

EducN_MDDg4MT4c4MDYezMj7IxMwjAyNT6EyMjQEyMjrA0MWzMg

25-NSIJ2NC1 Page : 4 / 18

m3 = 'Rendez-vous à 15h rue de la dictature. Signé : Alice.'

Il intercepte le message m0 transmis par Alice sur le réseau, le supprime, et le
remplace par le message m3 qu’il transmet à Bob, qui n’a aucun moyen de savoir
que le message ne provient pas d’Alice.

Pour éviter cela, on propose un protocole de signature permettant à Alice de certifier
qu’un message a été écrit par elle.

Alice chiffre son message m0 avec sa deuxième clé cle2_a, c’est-à-dire elle calcule
m0_s = code(m0, cle2_a) que l’on appelle la signature du message m0. Elle
transmet à la fois le message m0 et sa signature m0_s sur le réseau à Bob. De
manière générale, on suppose qu’il n’est pas possible de construire m0_s à partir de
m0 sans connaître la clé à l’origine de cette transformation.

7. Expliquer en quoi les informations m0, m0_s et cle1_a connues de Bob
permettent de garantir à la fois que le message provient bien d’Alice et que
Mallory n’a pas pu envoyer le message m3 à Bob en se faisant passer pour
Alice.

Partie D : Signature par empreinte

Un des problèmes de l’approche précédente est qu’Alice doit transmettre à la fois m0
et m0_s, ce qui double globalement la taille de chaque envoi. Pour résoudre ce
problème, on va signer en utilisant une empreinte du message plutôt que le message
lui-même.

On rappelle qu’un texte est représenté en machine à l’aide d’un encodage, par
exemple l’encodage ASCII, que l’on supposera utilisé dans cet exercice. La fonction
ord en Python permet d’obtenir le code d’un caractère.

Par exemple :

>>> ord('a')
97

>>> ord('b')
98

>>> ord('c')
99

On rappelle que la valeur absolue d’un nombre x, que l’on note |x| est la valeur de
ce nombre sans tenir compte de son signe. On suppose disposer de la fonction abs
en Python qui calcule la valeur absolue d’un nombre passé en paramètre.

EducN_MDDg4MT4c4MDYezMj7IxMwjAyNT6EyMjQEyMjrA0MWzMg

25-NSIJ2NC1 Page : 5 / 18

Par exemple :

>>> abs(4)
4

>>> abs(-6)
6

On considère la fonction de réduction qui prend en paramètre une chaîne de
caractères de longueur n et qui renvoie la somme, pour chaque indice i entre 1 et
n - 1, du produit de l’indice i et de la valeur absolue de la différence entre le code
du caractère d’indice i et celui d’indice i - 1.

On considère par exemple la chaîne de caractères s = 'abca', représentée ci-
dessous avec les indices :

0 1 2 3

a b c a

Pour cette chaîne de caractères, on obtient donc une réduction :

1 * |98 - 97| + 2 * |99 - 98| + 3 * |97 - 99| = 9

8. Donner sans justifier la réduction de la chaîne de caractères 'bac'.

9. Écrire en Python une fonction reduction qui calcule l’entier correspondant à
la réduction d’une chaîne de caractères.

 Par exemple :

 >>> reduction('abca')
9

>>> reduction(m0)
62073

>>> reduction(m3)
53681

Dans la suite, on peut utiliser la fonction str pour transformer l’entier correspondant
à une réduction, en chaîne de caractères.

Alice calcule donc m0_r = str(reduction(m0)) puis m0_s = code(m0_r,
cle2_a) qui est la nouvelle signature de m0.

10. Décrire ce que doit désormais réaliser Bob pour vérifier l’authenticité du
message, c’est-à-dire qu’il a bien été envoyé par Alice.

EducN_MDDg4MT4c4MDYezMj7IxMwjAyNT6EyMjQEyMjrA0MWzMg

25-NSIJ2NC1 Page : 6 / 18

Pour réduire davantage encore la taille de la signature, on propose de n’utiliser que
les dix premiers indices du message m0 dans le calcul de la réduction plutôt que le
message en entier.

11. Commenter cette approche.

Partie E : Chiffrement et signature

Dans le protocole proposé dans la dernière partie, le message m0 est envoyé sans
être chiffré et Eve peut en prendre connaissance.

12. Proposer un protocole qui permet à Alice d’envoyer un message à Bob de
manière confidentielle en certifiant que ce message provient bien d’elle et de
manière à ce que Eve ne puisse pas en prendre connaissance. Détailler
également la procédure que doit suivre Bob pour déchiffrer le message et
garantir qu’il provient d’Alice.

EducN_MDDg4MT4c4MDYezMj7IxMwjAyNT6EyMjQEyMjrA0MWzMg

25-NSIJ2NC1 Page : 7 / 18

Exercice 2 (6 points)

Cet exercice porte sur les bases de données et la programmation Python et la
gestion de bugs.

Dans cet exercice, on pourra utiliser les clauses du langage SQL pour :

• construire des requêtes d’interrogation à l’aide de SELECT, FROM, WHERE
(avec les opérateurs logiques AND, OR) et JOIN ... ON ;

• construire des requêtes d’insertion et de mise à jour à l’aide de UPDATE,
INSERT et DELETE ;

• affiner les recherches à l’aide de DISTINCT et ORDER BY.

Un magasin de bricolage utilise une base de données constituée de quatre tables
dont voici des extraits.

client

ref_client nom prenom email telephone

25123 Renaud Martine renaudm@tmail.com 0601020304

25137 Dupont Jacques dj@mail.fr 0604030201

25145 Pasteur Emile pasteur0@dmail.fr 0611121314

25149 Eiffel Franck eiffel95@popmail.fr 0614131211

25189 Kanek Elise ekanek@mail.fr 0600112233

25322 Shar Sofia shs@fmail.fr 0644332211

… … … … …

produit

ref_produit designation type prix_unitaire

85235 Marteau TAP Outillage 15.89

86782 Rouleau peinture Outillage 9.55

89363 Niveau à bulle Outillage 8.2

89552 Clous inox Visserie 4.5

89588 Sac sable Materiau 11.6

… … … …

EducN_MDDg4MT4c4MDYezMj7IxMwjAyNT6EyMjQEyMjrA0MWzMg

25-NSIJ2NC1 Page : 8 / 18

remise

ref_remise designation valeur date_debut date_fin

289 Client en or 25.0 2025/01/01 2025/12/31

326 Fin de serie 40.0 2025/01/01 2025/12/31

275 Jour fou 30.0 2025/03/17 2025/03/19

263 Soldes hiver 20.0 2025/01/01 2025/02/01

… … … … …

vente

ref_ven
te

date ref_produ
it

ref_clien
t

quantité ref_remis
e

25631 2025/03/1
6

86782 25123 2 289

25632 2025/03/1
6

89363 25123 1 289

25633 2025/03/1
7

85235 25149 1 326

25634 2025/03/1
8

89588 25145 5 275

… … … … … …

• L’attribut ref_client est une clé primaire de la table client ;

• l’attribut ref_produit est une clé primaire de la table produit ;

• l’attribut ref_remise est une clé primaire de la table remise ;

• l’attribut ref_vente est une clé primaire de la table vente ;

• dans la table remise, l’attribut valeur correspond au taux de remise
appliqué, exprimé en pourcentage.

1. Expliquer le rôle d’une clé primaire et rappeler la contrainte dans le choix de
celle-ci.

Dans la table vente, les attributs ref_produit et ref_client sont des clés
étrangères qui référencent respectivement les attributs ref_produit de la table
produit et ref_client de la table client.

EducN_MDDg4MT4c4MDYezMj7IxMwjAyNT6EyMjQEyMjrA0MWzMg

25-NSIJ2NC1 Page : 9 / 18

2. À l’aide des extraits de tables, détailler un achat d’Emile Pasteur en précisant :

– la date de son achat ;
– le ou les article(s) acheté(s) ;
– si c’est le cas, le taux de remise dont il a bénéficié.

Un nouveau client doit être entré dans la base, il s’agit de Gilles Bertaut, son email
est gbertaut@fmail.fr et son numéro de téléphone est 0641424344. Son
identifiant (ref_client) dans la base sera 25345.

3. Écrire une requête SQL permettant cet ajout.

Une correction est à apporter dans la base, l’email de la cliente Shar Sofia n’a pas
été correctement saisi, voici son email correct : ‘shars@fmail.fr’.

4. Écrire une requête SQL permettant cette mise à jour.

Dans la base de données, toutes les dates sont de type chaîne de caractères au
format 'aaaa/mm/jj'. Cela permet de comparer des dates entre elles : par
exemple l’opération '2025/04/12' < '2025/05/03' est vraie puisque la date du
12 avril 2025 est antérieure à celle du 3 mai 2025.

5. Écrire une requête qui permet d’afficher les attributs ref_client de tous les
clients ayant fait un achat à partir du 1er janvier 2025. On souhaite qu’un
même client n’apparaisse qu’une seule fois dans cet affichage.

6. La tondeuse de référence 90222 vendue dans le magasin a un défaut de
fabrication. Le responsable doit rappeler tous les clients qui ont acheté cette
tondeuse depuis le 15 septembre 2024, date de mise en stock des tondeuses
défectueuses. Écrire une requête qui permet d’obtenir le nom et le numéro de
téléphone des clients à rappeler.

Dans cette partie on suppose que du code Python associé aux requêtes SQL est
exécuté pour réaliser l’objectif souhaité. Pour cela, à chaque table de la base de
données est associé un dictionnaire Python qui porte le nom de la table.

Le dictionnaire contient les éléments suivants : cle_primaire : [attribut_1,
attribut_2, ...]. L’ordre des attributs est identique à celui des extraits de table
présentés en début d’exercice.

Par exemple, pour la table client, le dictionnaire associé est le suivant :

Client={25123:['Renaud','Martine','renaudm@tmail.com','0601020304’],

 25137:['Dupont', 'Jacques', 'dj@mail.fr','0604030201'],
 25145:['Pasteur','Emile','pasteur0@dmail.fr','0611121314'],
 25149:['Eiffel','Franck','eiffel95@popmail.fr'] }

EducN_MDDg4MT4c4MDYezMj7IxMwjAyNT6EyMjQEyMjrA0MWzMg

25-NSIJ2NC1 Page : 10 / 18

 vente = {25631 : ['2025/03/16', 86782, 25123, 2, 289],
 25632 : ['2025/03/16', 89363, 25123, 1, 289],
 25633 : ['2025/03/17', 85235, 25149, 1, 326],
 25634 : ['2025/03/18', 89588, 25145, 5, 275]}

On considère la fonction Python select_tel ci-dessous. Cette fonction est
associée à une requête SQL demandant le numéro de téléphone d’un client
connaissant son attribut ref_client. Elle prend en paramètres :

• client, un dictionnaire associé à la table client ;

• ref_client, un entier correspondant à l’attribut ref_client d’un client.

Ainsi l’instruction Python select_tel(client, 25137) est associée à la requête
SQL : SELECT telephone FROM client WHERE ref_client = 25137;

1 def select_tel(client, ref_client):
2 return client[...][...]

7. Recopier et compléter la ligne 2 du code de la fonction select_tel.

8. On considère le code de la fonction select_tel complétée. Ainsi l’exécution
de l’instruction select_tel(client, 25137) renvoie le bon résultat
'0604030201'. Mais l’exécution de l’instruction select_tel(client,
1234) provoque l’erreur ci-dessous :

 KeyError: 1234

 Expliquer ce qui, concernant le dictionnaire client, est à l’origine de cette
erreur et à quelle situation pour le magasin cela correspond.

9. Recopier le code de la fonction select_tel en proposant une modification
pour que la fonction renvoie None plutôt que de provoquer une KeyError
dans le cas où la situation précédente se présente.

On souhaite écrire le code de la fonction nb_produits qui prend comme
paramètres :

• vente, un dictionnaire associé à la table vente ;

• ref_produit, un entier associé à l’attribut ref_produit du dictionnaire à
la table vente.

Cette fonction renvoie alors le nombre total de produits de cette référence vendus.

Par exemple pour connaître le nombre de « Marteau TAP » vendu, on écrit
l’instruction : nb_produits (vente, 85235) où 85235 est le numéro identifiant le
produit « Marteau TAP » et vente est le dictionnaire associé à la table vente.

10. Écrire le code en Python de la fonction nb_produits.

EducN_MDDg4MT4c4MDYezMj7IxMwjAyNT6EyMjQEyMjrA0MWzMg

25-NSIJ2NC1 Page : 11 / 18

11. Dans cette question on considère que les tables de la base de données
contiennent exactement ce qui est présenté dans les extraits en début
d’exercice. On exécute la requête SQL : DELETE FROM produit WHERE
ref_produit = 89363;. Celle-ci n’est pas exécutée et on obtient le
message d’erreur foreign key constraint failed. Expliquer pourquoi
il est nécessaire que la requête demandée ne soit pas exécutée et qu’elle
affiche ce message d’erreur.

On considère le code Python de la fonction associée delete_prod qui permet de
supprimer un produit dont la référence est précisée. Cette fonction prend en
paramètres :

• produit, un dictionnaire associé à la table produit ;

• ref_produit, un entier correspondant à un attribut ref_produit de la
table produit.

1 def delete_prod(produit, vente, ref_produit):
2 del produit[ref_produit]

12. Réécrire le code de la fonction delete_prod en faisant toutes les
modifications et ajouts nécessaires pour qu’à son appel, elle refuse la
suppression du produit lorsqu’on rencontre la situation présentée à la question
précédente.

EducN_MDDg4MT4c4MDYezMj7IxMwjAyNT6EyMjQEyMjrA0MWzMg

25-NSIJ2NC1 Page : 12 / 18

Exercice 3 (8 points)

Cet exercice porte sur les structures de données, la programmation, les graphes.

Partie A

Le siteswap est une notation mathématique pour codifier les figures de jonglerie. Elle
est aujourd’hui utilisée par des jongleurs et jongleuses dans le monde entier.
Beaucoup de figures sont alors simplement désignées par leur siteswap, comme par
exemple 441, 7531 ou encore 453.

On modélise le jonglage de la manière suivante : au lieu de calculer des trajectoires
complexes, on considère simplement un rythme régulier sur lequel on jongle, et une
balle est lancée à chacun de ses « temps ».

Les lancers sont caractérisés par un nombre entier positif, représentant simplement
le nombre de « temps » au bout duquel la balle revient dans la main du jongleur et
peut être relancée.

À un instant donné, on peut représenter ce qu’on appelle un état, c’est-à-dire une
sorte de photographie des balles « en l’air ». On notera ces états sous forme de
tableaux Python, contenant des 0 et des 1. Un 0 représente un espace vide et un 1
représente une balle.

Si on considère l’état e1 = [1, 0, 0, 1, 1, 0] : son premier élément, e1[0]
vaut 1, et représente donc la balle prête à être relancée. Si e1[0] valait 0, aucune
balle à relancer ne serait présente. Ensuite chaque e1[i] représente la présence ou
non d’une balle qui atterrira dans la main de la jongleuse au bout de i temps.

Figure 1. Représentation de l’état e1

L’état e1 ci-dessus représente donc un instant d’une figure à 3 balles, l’une est dans
la main de la jongleuse, et deux autres balles sont plus haut, et retomberont dans la
main dans respectivement 3 et 4 temps puisque e1[3] et e1[4] sont égaux à 1 et
les autres à 0.

Comme l’indice maximal est de 5 dans le tableau, on dira que la hauteur maximale
est 5.

EducN_MDDg4MT4c4MDYezMj7IxMwjAyNT6EyMjQEyMjrA0MWzMg

25-NSIJ2NC1 Page : 13 / 18

Lorsque la jongleuse attrape la balle, elle va la relancer, dans un emplacement en
l’air qui est « libre », car elle ne souhaite pas recevoir à un moment donné deux
balles en même temps.

Dans l’exemple e1 = [1, 0, 0, 1, 1, 0], la jongleuse peut effectuer un lancer
de 1, un lancer de 2 ou un lancer de 5, car les emplacements e1[1], e1[2] et
e1[5] sont à 0, donc « libres ». Elle ne peut pas lancer un 3 ou un 4.

Figure 2. Transitions possibles depuis l’état e1

Si le premier élément de l’état est à 0, cela signifie que la jongleuse n’a aucune balle
dans sa main à cet instant. Elle ne peut donc pas lancer de balle, et on appellera ça,
par convention, un lancer « 0 ». Un lancer « 0 » n’est possible que dans cette
situation.

1. Si on se donne l’état e2 = [1, 1, 0, 1, 0, 0] indiquer quels sont les
lancers possibles.

2. Même question pour l’état e3 = [0, 1, 1, 0, 1].

3. Recopier et compléter les lignes 4, 7 et 8 du code de la fonction
lancer_possible ci-dessous. Elle prend en argument un tableau etat
représentant un état et un entier lancer, et renvoie True si le lancer est
possible, et False sinon.

 1 def lancer_possible(etat, lancer):
 2 if lancer >= len(etat) or lancer < 0:
 3 return False
 4 if lancer == 0 and ...
 5 return False
 6 if lancer > 0:
 7 if etat[0] == 0 or ...
 8 ...
 9 return True

Lorsqu’on lance une balle, elle vient se placer là où on l’a prévu, puis la gravité fait
son effet et toutes les balles redescendent d’un cran.

Ainsi, si depuis l’état e1 = [1, 0, 0, 1, 1, 0] on lance un 2, on obtient l’état
[0, 0, 1, 1, 1, 0] puis l’état [0, 1, 1, 1, 0, 0] après effet de la gravité :

EducN_MDDg4MT4c4MDYezMj7IxMwjAyNT6EyMjQEyMjrA0MWzMg

25-NSIJ2NC1 Page : 14 / 18

Figure 3. État e1, puis lancer de 2, puis effet de la gravité

4. Depuis l’état e2 = [1, 1, 0, 1, 0, 0], on effectue un lancer de 5.
Donner l’état qu’on obtient après le lancer et l’effet de la gravité.

On souhaite écrire une fonction lancer_balle qui prend en paramètres un état
etat de jonglage (comme décrit ci-dessus) et un entier positif lancer qui
représente un lancer. Elle ne doit pas modifier l’état passé en paramètre, mais doit
renvoyer un nouvel état correspondant au résultat du lancer. On suppose sans le
vérifier que le lancer est forcément valide.

5. Recopier et compléter la ligne 4 du code de la fonction lancer_balle
ci-dessous. On peut insérer plusieurs lignes si besoin.

 1 def lancer_balle(etat, lancer):
2 # copie de l'état pour ne pas le modifier
3 nouvel_etat = [balle for balle in etat]
4 ...
5 return nouvel_etat

Partie B

6. Écrire une fonction liste_lancers_possibles qui prend en paramètre un
état etat et qui renvoie une liste d’entiers correspondant à l’ensemble des
lancers possibles à partir de cet état.

 Par exemple

 1 >>> liste_lancers_possibles(e1)
2 [1, 2, 5]
3 >>> liste_lancers_possibles([0, 1, 1, 1, 0])
4 [0]

On souhaite maintenant générer toutes les suites de lancers possibles à partir d’un
état donné, c’est-à-dire tous les lancers consécutifs qu’on peut faire à partir de cet
état.

EducN_MDDg4MT4c4MDYezMj7IxMwjAyNT6EyMjQEyMjrA0MWzMg

25-NSIJ2NC1 Page : 15 / 18

Par exemple, à partir de l’état e1 = [1, 0, 0, 1, 1, 0] on peut lancer un 1, un
2 ou un 5. Si on a lancé un 1 on obtient l’état [1, 0, 1, 1, 0, 0] (on rappelle
que cet état est obtenu après le lancer et l’effet de gravité) et on peut lancer un 1, un
4 ou un 5. Et de même pour les états obtenus à partir de lancers 2 ou 5.

On peut alors calculer qu’à partir de e1 on peut faire les séries de lancers de
longueur 2 suivants (notés sous forme de listes Python) : [1, 1], [1, 4], [1, 5],
[2, 0], ou [5, 0].

On aimerait obtenir tous les lancers possibles d’une longueur donnée à partir d’un
état.

Pour cela on propose la méthode suivante :

• si la longueur demandée est 0, alors la seule séquence possible est la
séquence vide ;

• sinon, on calcule quels sont les lancers possibles à partir de cet état. Pour
chacun de ces lancers, on va :

– calculer le nouvel état obtenu ;
– chercher l’ensemble des séquences possibles à partir de ce nouvel état

(d’une longueur un de moins) ;
– pour toutes ces séquences, on ajoutera le numéro du lancer au début

et on la mettra dans une liste s_possibles à renvoyer au final.

Voici la fonction calcule_sequences partiellement écrite :

 1 def calcule_sequences(etat, n):
 2 """ etat est un état de jonglerie, n est un entier.
 3 Calcule et renvoie l'ensemble des siteswaps (listes
 4 d'entiers) de longueur n qu'on peut effectuer à
 5 partir de cet état."""
 6 if n == 0:
 7 return [[]]
 8 else:
 9 s_possibles = []
10 l_lancers = ...
11 for lancer in l_lancers:
12 etat2 = ...
13 s_etat2 = calcule_sequences(etat2, n-1)
14 for ...
15 s_possibles.append([lancer] + ...)
16 return s_possibles

7. Justifier qu’il s’agit d’une fonction récursive.

8. Expliquer brièvement pourquoi elle se termine si n est un entier positif. On
admet que les boucles for présentes sont bornées et donc terminent.

EducN_MDDg4MT4c4MDYezMj7IxMwjAyNT6EyMjQEyMjrA0MWzMg

25-NSIJ2NC1 Page : 16 / 18

9. Recopier et compléter les lignes 10, 12, 14 et 15 de cette fonction.

Partie C

Plutôt que de calculer l’ensemble des séquences possibles à partir d’un état donné,
on préfère calculer d’un coup, dès le début, l’ensemble des états et des lancers
possibles.

On représentera ces données par un graphe orienté, dont les sommets sont les
états, et on a un arc d’un état e à un état f si le lancer n permet de passer de l’état e
à l’état f. Dans ce cas on inscrit le n à proximité l’arc entre e et f et on dit que c’est
l’étiquette de l’arc.

On travaille donc avec un graphe orienté étiqueté.

Ce graphe est également appelé automate des états.

Voici par exemple l’automate des états des jonglages à deux balles, de hauteur
maximale 4.

Figure 4. Ensemble des états et lancers, à deux balles et hauteur maximale 4

On a choisi de représenter les états par des chaînes de caractères : '11000'
représente l’état [1, 1, 0, 0, 0] dans les parties précédentes.

On souhaite stocker ce graphe sous forme de dictionnaire de listes d’adjacences : les
clés sont les états, et les valeurs sont des listes de tuple : le premier élément est un
entier, le numéro du lancer possible, et le second est l’état qu’on obtient lorsqu’on
applique ce lancer.

10. Recopier et compléter le code Python permettant de représenter l’automate de
la figure 4 dans une variable automate :

EducN_MDDg4MT4c4MDYezMj7IxMwjAyNT6EyMjQEyMjrA0MWzMg

25-NSIJ2NC1 Page : 17 / 18

 1 automate = { '11000': [(3, '10100'), (2, '11000'), (4,
'10010')],
2 '01010': [(0, '10100')],
3 '10100': ...,
4 ...: [(0, '11000')],
5 ... : ...,
6 ... : ...}

11. Écrire le code de la fonction lancer_balle_automate qui prend en
arguments un automate automate comme décrit plus haut, un état etat et
un entier lancer représentant un lancer et qui renvoie l’état obtenu lorsqu’on
lance lancer depuis l’état etat. On renvoie la chaîne vide si le lancer n’est
pas possible.

 Par exemple, pour l’automate de la Figure 4,

 1 >>> lancer_balle_automate(automate, '10010', 2)
2 '01100'
3 >>> lancer_balle_automate(automate, '11000', 1)
4 ''

Un siteswap est une suite de lancers qui correspond à un cycle dans l’automate :
autrement dit cela correspond à des lancers qu’on peut répéter en boucle : c’est une
« figure » de jonglage.

Par exemple dans le graphe de la Figure 4, la séquence 3, 1 est un siteswap : on
part de l’état '11000' puis le lancer de 3 nous amène dans l’état '10100', le lancer
de 1 nous ramène dans l’état '11000' et on peut recommencer cette figure.

La séquence 1, 2, 3, 4, 0 est également un siteswap (partant de l’état
'10100', les lancers successifs sont possibles et on revient bien à l’état de départ).

La séquence 2 est également un siteswap (reste dans l’état '11000').

On souhaite écrire une fonction parcours_sequence_depart qui prend en
argument un automate, un état de départ, et une liste de lancers, et qui renvoie l’état
dans lequel on arrive en suivant la séquence de lancers, ou bien None si l’un des
lancers était impossible.

Par exemple :

1 >>> parcours_sequence_depart(automate, '11000', [3, 1])
2 '11000'
3 >>> parcours_sequence_depart(automate, '10010', [4, 0])
4 '01100'
5 >>> parcours_sequence_depart(automate, '10100', [3, 4])
6 None

12. Écrire le code de la fonction parcours_sequence_depart. On peut utiliser
la fonction lancer_balle_automate.

EducN_MDDg4MT4c4MDYezMj7IxMwjAyNT6EyMjQEyMjrA0MWzMg

25-NSIJ2NC1 Page : 18 / 18

Grâce à la fonction précédente, il est possible de vérifier qu’un siteswap est valide,
c’est-à-dire qu’il existe un état à partir duquel réaliser la figure de jonglage.

On souhaite à présent écrire une fonction departs_siteswap qui prend en
argument un automate et une liste de lancers (un potentiel siteswap), et renvoie la
liste des états de l’automate qui valide le siteswap.

Par exemple :

1 >>> departs_siteswap(automate, [1, 2, 3, 4, 0])
2 ['10100']
3 >>> departs_siteswap(automate, [2, 1, 0])
4 []

13. Écrire la fonction departs_siteswap. On peut utiliser la fonction
parcours_sequence_depart, et vérifier si le siteswap est possible à partir
de chaque état de l’automate.

